Роторные распределительные насосы высокого давления VR (VP-44)

Коды ошибок тнвд vp44

Роторные распределительные насосы высокого давления

В данной статье речь пойдёт о роторных насосах высокого давления VR (VP-44). Эти насосы ставились на легковые дизельные автомобили и специальную технику таких марок как: Audi, BMW, Cummins, Ford, John Deere, Isuzu, Man, Mitsubishi, Nissan, Opel, Sisu, Volvo и других. Особенность этого ТНВД в небольшой массе, в сравнительно небольшом моменте сопротивления вращению, что снижает потери мощности двигателя, в высоком давлении впрыска (до 1400 бар) и, конечно, в наличии электронного блока управления (ЭБУ) насосом непосредственно на корпусе ТНВД.

Распределительный ТНВД VP-44

Важно отметить, что для некоторых автомобилей производитель пошёл дальше и объединил ЭБУ двигателя и ЭБУ ТНВД в едином корпусе. Это сравнительно небольшое количество автомобилей, однако, такие ТНВД неремонтопригодны.

ТНВД VP-44 с встроенным ЭБУ двигателя

ТНВД VP-44 состоит из:

Насос VP-44 готовый к сборке

Несмотря на кажущуюся простоту конструкции, правильно разобрать насос совсем непросто. Мы ежедневно встречаем следы непрофессионального демонтажа ТНВД такие как: оборванныйшлейф датчика скорости, сломанный коннектор электромагнита дозирующего клапана, неправильная ориентация корпуса распределителя, элементы сломанные из-за отсутствия специального инструмента и опыта. Также не редки фатальные последствия неправильной сборки. Удивляет использование горе-слесарями герметиков, фторопластового универсального материала (ФУМ-ленты) и даже льна в качестве уплотнения, а ведь в корпусе ТНВД давление выше двадцати атмосфер и такое уплотнение выдерживает работу только на холостых оборотах.

Кустарный ремонт

На нашем предприятии имеется всё необходимое оборудование и инструмент для работы с этими насосами. Это касается инструментальных наборов, дооснащения стендов оригинальным оборудованием и оснасткой, а также соответствующего актуального программного обеспечения.

Оборудование

Работу с ТНВД мы начинаем со считывания памяти ЭБУ насоса. В ней хранится серийный номер и маска характеристик насоса, память неисправностей и некоторое количество свободных ячеек для согласования насоса.

Дело в том, что количество ремонтов насоса ограниченно количеством свободных ячеек для согласования. Обычно это две-три перезаписи, иногда для новых ЭБУ ТНВД предусмотрена лишь одна запись.

Объясним подробнее на примере ремонта насоса с заменой блока управления. Новый блок поступает абсолютно пустым, то есть в его памяти отсутствует информация. После монтажа на насос и установки на стенд мы загружаем в него стандартную для данного насоса программу, то есть для Opel Zafira – это один набор параметров, а для Audi A6 совершенно другой. Программа эта определена каталожным номером насоса, выбитым на корпусе ТНВД. Это десятизначный номер: для VP-44 Bosch – вида 0 470 50X XXX, а для VP-44 Zexel – 109342-XXXX.

Идентификационная табличка на корпусе ТНВД

Эта маска характеристик имеет общий набор значений топливоподачи, угла опережения впрыска, etc. Однако, у нас на руках конкретный насос из конкретных деталей, которые имеют свои размеры и плавность хода. Таким образом, насос, работающий по базовой характеристике, будет иметь неверную топливоподачу. На практике разница с эталонной подачей составляет до 80%, поэтому ЭБУ ТНВД регулируется и настраивается под конкретное «железо». Этот процесс называется «согласование характеристик». Согласование необходимо применять не только при замене ЭБУ, но и при ремонте связанном с заменой любого другого элемента ТНВД.

Настройка начинается с обучения датчика положения вала. Правильная информация о положении вала очень важна для определения угла опережения впрыска топлива. При этом точность регулирования – доли градуса. После каждого демонтажа датчика требуется обучение ЭБУ ТНВД. Для этого используется специальное приспособление и стенд EPS815 с дооснащением VPM844.

После обучения в память ЭБУ ТНВД сохраняется значение deltaPhi, характеризующее особенности установки датчика.

Далее к насосу подключаются трубки высокого давления и контрольные форсунки. Они подбираются строго согласно тест-плану. Форсунки настраиваются и дефектуются перед каждой проверкой. Ежегодно все контрольные форсунки (как и проверочные стенды) поверяются представителем ООО «Роберт Бош», что гарантирует их соответствие стандартам.

Теперь насос готов к определению характеристик. При проверке электронные датчики стенда контролируют температуру калибровочного масла (эквивалент дизельного топлива, стандарт ISO4113) на входе и выходе из насоса, внутрикорпусное давление и, разумеется, значение топливоподачи. По шине CAN стенду от ЭБУ ТНВД поступает информация о температуре топлива внутри насоса, положении вала и скорости его вращения, опережении, времени ответа клапана и масса иной информации.

VP-44 установленный на стенде

При этом проверка насоса происходит полностью автоматически. VP-44 и VP-29/30 единственные насосы, на проверку которых оператор никак не влияет. Этим достигается гарантированный положительный результат ремонта. Повторим: VP-44 невозможно «подтянуть под тест-план», нельзя «просто настроить старт и холостые», – если Вы получили на руки протокол проверки, в котором все показатели «в норме» – значит насос полностью исправен.

Первый лист протокола проверки

После определения характеристик, они загружаются в постоянную память ЭБУ. И насос тестируется на соответствие нормативам топливоподачи.

Если тестирование завершилось успешно, то следующим этапом является блокировка ТНВД. Под этим термином подразумевается правильная ориентация приводной муфты. Дело в том, что у насосов VP-29/30/44 приводные муфты и шестерни устанавливаются без шпонок. Стенд во время специального испытания с помощью пьезоэлемента, который устанавливается на трубке одной из форсунок, определяет момент впрыска на этой форсунке, сверяет эту информацию с датчиком положения вала, и, находя угол, на который нужно повернуть приводной вал для начала подачи, фиксирует вал в этом положении. После на него устанавливается приводная муфта.

Некоторые ТНВД имеют иммобилайзер в ЭБУ, в таком случае при замене ЭБУ или всего насоса при установке на автомобиль необходимо синхронизировать ТНВД с ЭБУ автомобиля.

Особенности отказов распределительных ТНВД VP-44

Помимо обычного и понятного эксплуатационного износа распределительной головы ТНВД, включающего износ плунжерных пар или клапана управления, могут быть следующие неисправности:

Моторное масло в топливе (и завоздушивание топливной системы)

Виною тому нарушение герметичности соединения приводного вала и сальника. Из-за разряжения в передней части корпуса, образуемого топливоподкачивающим насосом, начинается «подсос» масла или просто воздуха.

Моторное масло внутри ТНВД

Проблемы с регулированием угла опережения впрыска

Они характеризуются плохим запуском автомобиля, «вялостью» при разгоне, повышенной дымностью отработавших газов и другими симптомами. Обычно это связано с уменьшением плавности хода поршня автомата опережения впрыска. Он может даже попросту застрять в одном положении.

Поршень автомата опережения впрыска с задирами

Это связано либо с плохими смазывающими свойствами топлива, либо с загрязнением топлива, в том числе и водой – ведь ржавчина неплохой абразив. Иногда детали насоса заклинивают по причине обрыва и прохождения через насос фильтра грубой очистки (металлической сетки) с редукционного клапана.

Редукционный клапан насоса с повреждённым фильтром грубой очистки

Выход из строя ЭБУ ТНВД, вследствие короткого замыкания

VP-44 – очень надёжный агрегат и владельцы редко заглядывают в моторный отсек. Но изоляция проводов идущих к электрическим клапанам и исполнительным магнитам не так долговечна. Из-за больших токов она работает в сложных условиях и разрушается со временем, приводя к замыканию выходных каскадов ЭБУ и выходу его из строя.

Нарушение изоляции проводов

Отметим, что ЭБУ на таких насосах часто выходят из строя даже при замене топливного фильтра некомпетентным персоналом. Ведь VР-44 ни в коем случае нельзя запускать если он завоздушен. Топливо охлаждает электронную начинку насоса, а без охлаждения она просто «перегорает». Даже зная это, неопытный человек не сможет без специального инструмента удалить воздушные карманы под ЭБУ насоса.

Разумеется выше перечислены далеко не все возможные неисправности. VP-44 – самый сложный насос фирмы Роберта Боша и требует только профессионального подхода.

Наше предприятие ежедневно ремонтирует эти насосы и автомобили с этой топливной системой, предлагая клиенту сервис «под ключ». Мы используем оригинальные запасные части и технологию ремонта от производителя.

Ждём Вас в Автоцентре Петербург.

Статья составлена инженером-механиком по ремонту топливной аппаратуры дизельных двигателей Автоцентра «Петербург» Сандыбаевым Е. С.

Топливный насос высокого давления VP-44

Топливные насосы высокого давления VP-44 используются на мо­делях дизелей Opel Ecotec, Opel Astra, Audi, Ford, BMW, Daimler-Chrysler. Давление впрыска, развиваемое насосами такого типа достигает 1000 кгс/см2.

Схема топливной системы с этим ТНВД представлена на рисунке:

Система непосредственного впрыска дизельного двигателя с ТНВД VP-44

Рис. Система непосредственного впрыска дизельного двигателя с ТНВД VP-44:
1 – топливный бак; 2 – фильтр тонкой очистки топлива; 3 – ТНВД; 4 – ЭБУ ТНВД; 5 – электромагнитный клапан управления подачей топлива; 6 – электромагнитный клапан угла опережения впрыска; 7 – автомат опережения впрыска; 8 – ЭБУ двигателя; 9 – форсунка с датчиком подъема иглы; 10 – свеча предпускового подогрева с закрытым нагревательным элементом; 11 – ЭБУ свечей накаливания; 12 – датчик температуры охлаждающей жидкости; 13 – датчик частоты вращения коленчатого вала; 14 – датчик температуры воздуха на впуске; 15 – массовый расходомер воздуха; 16 – датчик давления наддува; 17 – турбокомпрессор; 18 – привод клапана системы рециркуляции ОГ; 19 – привод клапана регулирования давления наддува; 20 – вакуумный насос; 21 – аккумуляторная батарея; 22 – приборная панель с указателем расхода топлива, тахометром и т. д.; 23 – датчик положения педали акселератора; 24 – концевой выключатель (на педали сцепления); 25 – контакты стоп-сигнала; 26 – датчик скорости автомобиля; 27 — блок управления круиз-контролем; 28 – компрессор кондиционера; 29 – диагностический дисплей с выводами для диагностического тестера.

Особенностью приведенной системы является совмещенный блок управления как для ТНВД, так и для других систем двигателя. Блок управления состоит из двух частей, оконечные каскады питания электромагнитов которых расположены на корпусе ТНВД.

Общий вид ТНВД VP-44 показан на рисунке:

Топливный насос высокого давления VP-44

Рис. Топливный насос высокого давления VP-44:
1 – топливоподкачивающий насос; 2 – датчик частоты и положения вала насоса; 3 – кулачковая шайба; 4 – блок управления; 5 – штекерная колодка; 6 – нагнетательные плунжеры; 7 – ротор-распределитель; 8 – электромагнитный клапан управления подачей; 9 – нагнетательный клапан; 10 – электромагнитный клапан установки момента начала впрыскивания; 11 – устройство опережения впрыскивания; 12 – датчик угла пово­рота приводного вала

Контур низкого давления

Топливоподкачивающий насос 17 в ТНВД VP-44 шиберного типа аналогичный рассмотренным выше. Давление топлива, создаваемое топливоподкачивающим насосом на стороне на­гнетания, зависит от частоты вращения колеса насоса. В то же время это давление при возрастании частоты вращения уве­личивается непропорционально. Клапан регулирования давления 2 распо­лагается в непосредственной близости от топливоподкачивающего насоса. Клапан изменяет давление нагнетания, создаваемое топливоподкачивающим насосом, в зависимости от требуемого расхода топлива.

Топливо от топливоподкачивающего насоса поступает к насосной секции ТНВД и устройству опере­жения впрыски­вания.

Гидравлическая схема ТНВД VP-44

Рис. Гидравлическая схема ТНВД VP-44:
1 – блок управления работой дизеля; 2 – клапан регулирования давления; 3 – поршень клапана регулирования давления; 4 – клапан дросселирования перепуска; 5 – отводной канал; 6 – дроссель; 7 блок управления ТНВД; 8 – поршневой демпфер; 9 – электромагнитный клапан управления подачей; 10 – нагнетательный клапан; 11 – форсунка; 12 – электромагнитный клапан установки момента начала впрыскивания; 13 – ротор-распределитель; 14 – насосная секция ТНВД с радиальным движением плунже­ров; 15 – датчик угла пово­рота приводного вала ТНВД; 16 – устройство опере­жения впрыски­вания; 17 – топливоподкачивающий насос

Если создаваемое давление топлива превышает определенную величину, тор­цевая кромка поршня 3 открывает отверстия расположенные радиально, и через них поток топлива сливается по ка­налам насоса к подводящему пазу. Если давление топлива слишком мало, эти ра­диальные отверстия закрыты вследствие преобладания сил пружины. Предвари­тельный натяг пружины определяет, таким образом, величину давления откры­тия клапана.

Для охлаждения топливоподкачивающего насоса и удаления из него воздуха топливо проходит через привинченный к корпусу насоса клапан дросселирования перепуска 4.

Этот клапан осуществляет отвод топ­лива через отводной канал 5. В корпусе клапана находится нагруженный пружи­ной шарик, который позволяет выте­кать топливу только по достижении опре­деленной величины давления в канале.

Дроссель 6 очень малого диаметра, связанный с линией отвода, расположен в корпусе клапана параллельно основному каналу отвода топлива. Он обеспечивает автоматическое удаление воздуха из на­соса. Весь контур низкого давления ТНВД рассчитан на то, что в топливный бак через клапан дросселирования пере­пуска всегда перетекает некоторое количество топлива.

Контур высокого давления

В контур высокого давления вхо­дят ТНВД, а также узел распределения и регулирования величины и момента на­чала подачи с использованием только од­ного элемента — электромагнитного кла­пана высокого давления.

Насосная секция ТНВД с радиальным движением плунжеров создает требуемое для впрыскивания давление величиной до 1000 кгс/см2. Она приводится через вал и включает в себя:

Примеры расположения плунжеров

Рис. Примеры расположения плунжеров:
а – для четырех или шести цилиндров; b – для шести цилинд­ров; с – для четырех цилиндров; 1– кулачковая шайба; 2 – ролик; 3 – направляющие пазы приводного вала; 4 – башмак ролика; 5 – нагнетающий плунжер; 6 – вал-распределитель; 7 – камера высокого давления

Крутящий момент от приводного ва­ла передается через соединительную шайбу и шлицевое соединение непосред­ственно на вал-распределитель. Направляющие пазы 3 служат для того, чтобы через башмаки 4 и сидящие в них ролики 2 обеспечить работу нагнета­ющих плунжеров 5 сообразно внутрен­нему профилю кулачковой шайбы 1. Ко­личество кулачков на шайбе соответст­вует числу цилиндров двигателя. В кор­пусе вала-распределителя нагнетающие плунжеры расположены радиально, что и дало название этому типу ТНВД. На вос­ходящем профиле кулачка плунжеры со­вместно выдавливают топливо в цент­ральную камеру высокого давления 7. В зависимости от числа цилиндров двигателя и условий его применения сущест­вуют варианты ТНВД с двумя, тремя или четырьмя нагнетающими плунжерам.

Корпус-распределитель состоит из:

Корпус-распределитель

Рис. Корпус-распределитель: а — фаза наполнения b — фаза нагнетания:
1 – плунжер; 2 – вал-распредели­тель; 3 – распределительная втулка; 4 – запирающая игла электромагнитного клапана высокого давления; 5 – канал обратного слива топлива; 6 – фланец; 7 – электромагнитный клапан высокого давления; 8 – канал камеры вы­сокого давления; 9 – кольцевой канал впуска топлива; 10 – аккумулирующая мембрана, разделяющая полости подкачки и слива; 11 – полость за мемб­раной; 12 – камера низкого давления; 13 – распределительная канавка; 14 – выпускной канал; 15 – нагнетательный клапан; 16 – штуцер магистрали высокого давления

В фазе наполнения на нис­ходящем профиле кулачков радиально движущиеся плунжеры 1 перемещаются наружу, к поверхности кулачковой шай­бы. Запирающая игла 4 при этом находится в свободном состоянии, открывая канал впуска топлива. Через камеру низкого давления 12, кольцевой канал 9 и канал иглы топливо направляется от топливоподкачивающего насоса по каналу 8 вала-распределителя и заполняет камеру высокого давления. Излишек топлива вытекает через канал 5 обратного слива.

В фазе нагнетания плунже­ры 1 при закрытой игле 4 перемещаются на восходящем профиле кулачков к оси вала-распределителя, повышая давление в камере высокого давления.

Благодаря этому топливо под высоким давлением движется по каналу 8 ка­меры высокого давления. Затем топливо через распределительную канавку 13, ко­торая в этой фазе соединяет вал-распре­делитель 2 с выпускным каналом 14, шту­цер 16 с нагнетательным клапаном 15, ма­гистраль высокого давления и форсунку поступает в камеру сгорания двигателя.

Дозирование топлива с помощью электромагнитного клапана высокого давления

Для дозирования цикловой подачи в кон­тур высокого давления ТНВД встроен электромагнитный клапан высокого давления 7.

К электромагнитному клапану вы­сокого давления по сигналу блока управ­ления ТНВД в катушку электромагнита подается напряжение, и якорь переме­щает иглу 4, прижимая ее к седлу. Если игла прижата к седлу, топливо поступает только в выпускной канал высокого давления 14 соединенный с нагнетательным клапаном 15, где давление резко повышается, а от него к форсунке. Дозирование подачи топлива определяется интервалом между моментом начала подачи и моментом открытия электромагнитного клапана и на­зывается продолжительностью подачи. Продолжительность закрытия электро­магнитного клапана, определяемая блоком управления, регулирует таким об­разом величину цикловой подачи топли­ва. После окончания впрыска, электромагнит клапана обесточивается, при этом электромагнитный клапан высокого давления открывается, и давление в контуре снижается, прекращая подачу топлива к форсунке.

Избыточное топливо, которое нагне­тается вплоть до прохождения роликом плунжера верхней точки профиля кулач­ка, направляется через специальный ка­нал в пространство за аккумулирующей мембраной. Скачки высокого давления, которые при этом возникают в контуре низкого давления, демпфируются акку­мулирующей мембраной. Кроме того, это пространство сохраняет аккумулирован­ное топливо для процесса наполнения перед последующим впрыскиванием.

Для остановки двигателя с помощью электромагнитного клапана полностью прекращается нагнетание под высоким давлением. Следовательно, не требуется дополнительный остановочный клапан, как это имеет место в распределительных ТНВД с управлением регулирующей кромкой.

Демпфирование волн давления с помощью нагнетательного клапана с дросселированием обратного потока.

Нагнетательный клапан 15 с дросселирова­нием обратного потока в конце очередного впрыскивания топлива предотвращает новое открытие распылителя форсунки, что исключает появление подвпрыскивания, которое возможно в ре­зультате появления волн давления или их отражений. Подвпрыскивание отрица­тельно сказывается на токсичности ОГ.

С началом подачи конус клапана открывает клапан. Теперь топливо нагнетается через штуцер и магистраль высокого давления к форсунке. По окончании на­гнетания давление топлива резко падает, и возвратная пружина прижимает ко­нус клапана к его седлу. Обратные вол­ны давления, возникающие при закры­тии форсунки, гасятся дросселем нагнетательного клапана, что предотвращает подвпрыскивание топлива в камеру сгорания.

Устройство опережения впрыскивания топлива

Наиболее благоприятно процесс сгорания, равно как и лучшая отдача дизеля по мощности, протекает только в том случае, когда момент начала сгорания соответствует определенному положению коленчатого вала или поршня в цилиндре Задачей устройства опережения впрыскивания является увеличение угла начала подачи топлива при повышении частоты вращения коленчатого вала. Это устройство, состоящее из датчика угла поворота приводного вала ТНВД, блока управления и электромагнитного клапана установки момента начала впрыскивания, обеспечивает оптимальный момент начала впрыскивания соот­ветственно условиям эксплуатации двигателя, чем компенсирует временной сдвиг, определяемый сокращением пе­риода впрыскивания и воспламенения при увеличении частоты вращения.

Устройство опережения впрыскивания, оснащенное гидравлическим приводом, встроено в нижнюю часть корпуса ТНВД поперек его продольной оси.

Устройство опережения впрыскивания

Рис. Устройство опережения впрыскивания:
1 – кулачковая шайба; 2 – шаровая цапфа; 3 – плунжер установки угла опережения впрыскивания; 4 – подводной/отвод­ной канал; 5 – регулировочный клапан; 6 – шиберный топливоподкачивающий насос; 7 – выход топлива; 8 – вход топлива; 9 – подвод от топлив­ного бака; 10 – пружина управля­ющего поршня; 11 – возвратная пружина; 12 – управляющий поршень; 13 – кольцеобразная камера гидравли­ческого упора; 14 – дроссель; 15 – электромагнитный клапан установки момента начала впрыскивания (в закрытом положении)

Кулачковая шайба 1 входит своей ша­ровой цапфой 2 в поперечное отверстие плунжера 3 так, что поступательное дви­жение последнего превращается в поворот кулачковой шайбы. В середине плунжера находится регулировочный клапан 5, кото­рый открывает и закрывает управляющие отверстия в плунжере. По оси плунжера 3 расположен нагруженный пружиной 10 управляющий поршень 12, который задает положение регулировочного клапана.

Поперек оси плунжера находится электромагнитный клапан 15 установки момента начала впрыскивания. Блок управления ТНВД воздействует на плунжер устройства опережения впры­скивания с помощью этого клапана (рис. 5.50), на который непрерыв­но подаются импульсы тока постоянной частоты и переменной скважности. Клапан изменяет давление, действующее на управляю­щий поршень.

Электромагнитный клапан установки момента начала впрыскивания

Рис. Электромагнитный клапан установки момента начала впрыскивания:
1 – седло клапана; 2 – направление закрытия; 3 – игла клапана; 4 – якорь электромаг­нита; 5 – катушка; 6 – электромагнит

Регулирование начала впрыскивания

В зависимости от условий эксплуатации двигателя (нагрузка, частота вращения коленчатого вала, температура охлажда­ющей жидкости) блок управления рабо­той дизеля устанавливает не­обходимый угол опережения впрыскива­ния, который определяется соответству­ющим полем характеристик. Для обеспечения необходимого угла опережения впрыскивания кулачковая шайба поворачивается на определенный угол.

Регулятор начала впрыскивания в блоке управления ТНВД постоянно срав­нивает действительное значение момента начала впрыскивания с заданным. Если различие этих сигналов выше допусти­мого, регулятор изменяет момент начала впрыскивания с помощью электромаг­нитного клапана установки момента на­чала впрыскивания. Информацию о дей­ствительном моменте начала впрыскива­ния передает сигнал датчика утла поворо­та приводного вала ТНВД или, в качестве альтернативы, сигнал датчика подъема иглы распылителя форсунки.

Установка раннего опережения впрыскивания

На неработающем двигателе плунжер 3 установки угла опережения впрыскива­ния благодаря возвратной пру­жине 11 устанавливается на позднее впрыскивание. При работающем двига­теле давление топлива внутри ТНВД из­меняется клапаном регулирования давле­ния в зависимости от частоты вращения коленчатого вала. Давление топлива, про­ходящего через дроссель 14 в кольцеоб­разную камеру 13 гидравлического упора, сдвигает при закрытом электромагнит­ном клапане 15 управляющий поршень 12 в направлении положения «раньше», преодолевая силу пружины 10 поршня. Благодаря этому на более ранний угол опережения впрыскивания сдвигается и регулировочный клапан 5, связанный с управляющим поршнем, открывая канал 4, ведущий к камере за плунжером 3.

Топливо, поступая через этот канал, оказывает давление на плунжер, перемещая его в направлении положения «раньше». Осе­вое перемещение плунжера 3 преобразу­ется через шаровую цапфу 2 в поворот кулачковой шайбы 1 относительно вала привода ТНВД, что ведет к более раннему набеганию роликов на кулачки и обеспе­чивает более раннее начало впрыскива­ния. Возможность установки более ран­него утла опережения впрыскивания со­ставляет до 20° угла поворота кулачковой шайбы (соответственно 40° угла поворо­та коленчатого вала).

Установка позднего опережения впрыскивания

Электромагнитный клапан 15 установки момента начала впрыскивания открыва­ется, если он воспринимает сигнал от блока управления ТНВД. При его открытии снижается управляющее давление в кольцеобразной камере 13 гидравлического упора.

Управляющий поршень 12 переме­щается силой пружины 10 в направлении положения «позже». Когда регулировоч­ный клапан 5 открывает управляющее отверстие соединенное с каналом 4, тогда топливо начинает вытекать из полости за плунжером 3. Сила пружины 11 и реактивный момент на ку­лачковой шайбе 1 давят теперь на плун­жер 3 в направлении положения «позже», т. е. к исходному положению.

Регулирование управляющего давления

Так как электромагнитный клапан 15 способен быстро открываться и закрываться он работает как регулируемый дроссель и постоянно влияет на управля­ющее давление так, что плунжер 3 может занимать любое положение в рабочем диапазоне «раньше — позже». При этом отношение времени открытия электромаг­нитного клапана к общей продолжитель­ности рабочего цикла перемещения иглы электромагнитного клапана определяет­ся блоком управления ТНВД.

Например, если управляющий плун­жер должен быть установлен в положение «раньше», это отношение изменяется блоком управления так, чтобы уменьшался период открытого положения кла­пана. В этом случае через электромагнит­ный клапан проходит некоторое количество топлива, и плунжер двигается в сторону положения «раньше».

Источники:

https://diesel. acpiter. ru/articles/rotornyye-raspredelitelnyye-nasosy-vysokogo-davleniya-vp-44/

https://ustroistvo-avtomobilya. ru/dizel-naya-toplivnaya-apparatura/tnvd/toplivny-j-nasos-vy-sokogo-davleniya-vp-44/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: