Помехоустойчивое кодирование. Коды Хэмминга

Найти ошибку в коде хемминга

Любое помехоустойчивое кодирование добавляет избыточность, за счет чего и появляется возможность восстановить информацию при частичной потере данных в канале связи (носителе информации при хранении). В случае эффективного кодирования убирали избыточность, а в помехоустойчивом кодировании добавляется контролируемая избыточность.

Простейший пример – мажоритарный метод, он же многократная передача, в котором один символ передается многократно, а на приемной стороне принимается решение о том символе, количество которых больше.

Допустим есть 4 символа информации, А, B, С, D, и эту информацию повторяем несколько раз. В процессе передачи информации по каналу связи, где-то возникла ошибка. Есть три пакета (A1B1C1D1|A2B2C2D2|A3B3C3D3), которые должны нести одну и ту же информацию.

мажоритарный метод

Но из картинки справа, видно, что второй символ (B1 и C1) они отличаются друг от друга, хотя должны были быть одинаковыми. То что они отличаются, говорит о том, что есть ошибка.

Необходимо найти ошибку с помощью голосования, каких символов больше, символов В или символов С? Явно символов В больше, чем символов С, соответственно принимаем решение, что передавался символ В, а символ С ошибочный.

Для исправления ошибок нужно, как минимум 3 пакета информации, для обнаружения, как минимум 2 пакета информации.

Параметры помехоустойчивого кодирования

Первый параметр, скорость кода R характеризует долю информационных («полезных») данных в сообщении и определяется выражением: R=k/n=k/m+k

Параметры n и k часто приводят вместе с наименованием кода для его однозначной идентификации. Например, код Хэмминга (7,4) значит, что на вход кодера приходит 4 символа, на выходе 7 символов, Рида-Соломона (15, 11) и т. д.

Второй параметр, кратность обнаруживаемых ошибок – количество ошибочных символов, которые код может обнаружить.

Третий параметр, кратность исправляемых ошибок – количество ошибочных символов, которые код может исправить (обозначается буквой t).

Контроль чётности

Самый простой метод помехоустойчивого кодирования это добавление одного бита четности. Есть некое информационное сообщение, состоящее из 8 бит, добавим девятый бит.

Если нечетное количество единиц, добавляем 0.

1 0 1 0 0 1 0 0 | 0

Если четное количество единиц, добавляем 1.

1 1 0 1 0 1 0 0 | 1

Если принятый бит чётности не совпадает с рассчитанным битом чётности, то считается, что произошла ошибка.

1 1 0 0 0 1 0 0 | 1

Под кратностью понимается, всевозможные ошибки, которые можно обнаружить. В этом случае, кратность исправляемых ошибок 0, так как мы не можем исправить ошибки, а кратность обнаруживаемых 1.

Есть последовательность 0 и 1, и из этой последовательности составим прямоугольную матрицу размера 4 на 4. Затем для каждой строки и столбца посчитаем бит четности.

Прямоугольный код – код с контролем четности, позволяющий исправить одну ошибку:

прямоугольный код

И если в процессе передачи информации допустим ошибку (ошибка нолик вместо единицы, желтым цветом), начинаем делать проверку. Нашли ошибку во втором столбце, третьей строке по координатам. Чтобы исправить ошибку, просто инвертируем 1 в 0, тем самым ошибка исправляется.

Этот прямоугольный код исправляет все одно-битные ошибки, но не все двух-битные и трех-битные.

Рассчитаем скорость кода для:

Здесь R=16/24=0,66 (картинка выше, двадцать пятую единичку (бит четности) не учитываем)

Более эффективный с точки зрения скорости является первый вариант, но зато мы не можем с помощью него исправлять ошибки, а с помощью прямоугольного кода можно. Сейчас на практике прямоугольный код не используется, но логика работы многих помехоустойчивых кодов основана именно на прямоугольном коде.

Классификация помехоустойчивых кодов

По используемому алфавиту:

Блочные коды делятся на

В случае систематических кодов, выходной блок в явном виде содержит в себе, то что пришло на вход, а в случае несистематического кода, глядя на выходной блок нельзя понять что было на входе.

систематический и несистематический код

Смотря на картинку выше, код 1 1 0 0 0 1 0 0 | 1 является систематическим, на вход поступило 8 бит, а на выходе кодера 9 бит, которые в явном виде содержат в себе 8 бит информационных и один проверочный.

Классификация помехоустойчивых кодов

Код Хэмминга

Код Хэмминга — наиболее известный из первых самоконтролирующихся и самокорректирующихся кодов. Позволяет устранить одну ошибку и находить двойную.

Код Хэмминга (7,4)

Код Хэмминга (7,4) — 4 бита на входе кодера и 7 на выходе, следовательно 3 проверочных бита. С 1 по 4 информационные биты, с 6 по 7 проверочные (см. табл. выше). Пятый проверочный бит y5, это сумма по модулю два 1-3 информационных бит. Сумма по модулю 2 это вычисление бита чётности.

Декодирование кода Хэмминга

Современные коды более эффективны по сравнению с рассматриваемыми примерами. В таблице ниже приведены Коды Боуза-Чоудхури-Хоквингема (БЧХ)

Коды Боуза-Чоудхури-Хоквингема (БЧХ)

Из таблицы видим, что там один класс кода БЧХ, но разные параметры n и k.

Несмотря на то, что скорость кода близка, количество исправляемых ошибок может быть разное. Количество исправляемых ошибок зависит от той избыточности, которую добавим и от размера блока. Чем больше блок, тем больше ошибок он исправляет, даже при той же самой избыточности.

Пример: помехоустойчивые коды и двоичная фазовая манипуляция (2-ФМн). На графике зависимость отношения сигнал шум (Eb/No) от вероятности ошибки. За счет применения помехоустойчивых кодов улучшается помехоустойчивость.

График помехоустойчивых кодов

Из графика видим, код Хэмминга (7,4) на сколько увеличилась помехоустойчивость? Всего на пол Дб это мало, если применить код БЧХ (127, 64) выиграем порядка 4 дБ, это хороший показатель.

Компромиссы при использовании помехоустойчивых кодов

Для того, чтобы понять работу данного алгоритма, рассмотрим пример.

Подготовка

В середине 1940-х годов в лаборатории фирмы Белл (Bell Labs) была создана счётная машина Bell Model V. Это была электромеханическая машина, использующая релейные блоки, скорость которых была очень низка: одна операция за несколько секунд. Данные вводились в машину с помощью перфокарт с ненадёжными устройствами чтения, поэтому в процессе чтения часто происходили ошибки. В рабочие дни использовались специальные коды, чтобы обнаруживать и исправлять найденные ошибки, при этом оператор узнавал об ошибке по свечению лампочек, исправлял и снова запускал машину. В выходные дни, когда не было операторов, при возникновении ошибки машина автоматически выходила из программы и запускала другую.

Хэмминг часто работал в выходные дни, и все больше и больше раздражался, потому что часто должен был перезагружать свою программу из-за ненадежности считывателя перфокарт. На протяжении нескольких лет он искал эффективный алгоритм исправления ошибок. В 1950 году он опубликовал способ кодирования, который известен как код Хэмминга.

Систематические коды[править | править код]

Систематические коды образуют большую группу из блочных, разделимых кодов (в которых все символы слова можно разделить на проверочные и информационные). Особенностью систематических кодов является то, что проверочные символы образуются в результате линейных логических операций над информационными символами. Кроме того, любая разрешенная кодовая комбинация может быть получена в результате линейных операций над набором линейно независимых кодовых комбинаций.

Самоконтролирующиеся коды[править | править код]

Коды Хэмминга являются самоконтролирующимися кодами, то есть кодами, позволяющими автоматически обнаруживать ошибки при передаче данных. Для их построения достаточно приписать к каждому слову один добавочный (контрольный) двоичный разряд и выбрать цифру этого разряда так, чтобы общее количество единиц в изображении любого числа было, например, нечетным. Одиночная ошибка в каком-либо разряде передаваемого слова (в том числе, может быть, и в контрольном разряде) изменит четность общего количества единиц. Счетчики по модулю 2, подсчитывающие количество единиц, которые содержатся среди двоичных цифр числа, дают сигнал о наличии ошибок.

При проверочном бите этом невозможно узнать, в какой именно позиции слова произошла ошибка, и, следовательно, нет возможности исправить её. Остаются незамеченными также ошибки, возникающие одновременно в двух, четырёх, и т. д. — в четном количестве разрядов. Предполагается, что двойные, а тем более многократные ошибки маловероятны.

Самокорректирующиеся коды[править | править код]

Диапазон m kmin
1 2
2-4 3
5-11 4
12-26 5
27-57 6

Минимальные значения k при заданных значениях m, найденные в соответствии с этим неравенством, приведены в таблице.

Наибольший интерес представляют двоичные блочные корректирующие коды. При использовании таких кодов информация передаётся в виде блоков одинаковой длины и каждый блок кодируется и декодируется независимо друг от друга. Почти во всех блочных кодах символы можно разделить на информационные и проверочные или контрольные. Таким образом, все слова разделяются на разрешенные (для которых соотношение информационных и проверочных символов возможно) и запрещенные.

Основными характеристиками самокорректирующихся кодов являются:

Граница Плоткина даёт верхнюю границу кодового расстояния:

Граница Хэмминга устанавливает максимально возможное число разрешенных кодовых комбинаций:

где — число сочетаний из элементов по элементам. Отсюда можно получить выражение для оценки числа проверочных символов:

Для значений разница между границей Хэмминга и границей Плоткина невелика.

Граница Варшамова — Гилберта для больших n определяет нижнюю границу числа проверочных символов:

Все вышеперечисленные оценки дают представление о верхней границе при фиксированных и или оценку снизу числа проверочных символов.

Код Хэмминга[править | править код]

Построение кодов Хэмминга основано на принципе проверки на четность числа единичных символов: к последовательности добавляется такой элемент, чтобы число единичных символов в получившейся последовательности было четным:

Знак здесь означает сложение по модулю 2:

Если — то ошибки нет, если — то однократная ошибка.

Для каждого числа проверочных символов существует классический код Хэмминга с маркировкой:

Получение кодового слова выглядит следующим образом:

На вход декодера поступает кодовое слово
где штрихом помечены символы, которые могут исказиться в результате действия помехи. В декодере в режиме исправления ошибок строится последовательность синдромов:

называется синдромом последовательности.

Получение синдрома выглядит следующим образом:

Кодовые слова кода Хэмминга приведены в таблице.

Синдром указывает на то, что в последовательности нет искажений. Каждому ненулевому синдрому соответствует определённая конфигурация ошибок, которая исправляется на этапе декодирования.

Для кода в таблице справа указаны ненулевые синдромы и соответствующие им конфигурации ошибок (для вида: ).

Алгоритм кодирования[править | править код]

Предположим, что нужно сгенерировать код Хэмминга для некоторого информационного кодового слова. В качестве примера возьмём 15-битовое кодовое слово хотя алгоритм пригоден для кодовых слов любой длины. В приведённой ниже таблице в первой строке даны номера позиций в кодовом слове, во второй — условное обозначение битов, в третьей — значения битов.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
1 1 0 1 1 1 1 1

Вставим в информационное слово контрольные биты таким образом, чтобы номера их позиций представляли собой целые степени двойки: 1, 2, 4, 8, 16… Получим 20-разрядное слово с 15 информационными и 5 контрольными битами. Первоначально контрольные биты устанавливаем равными нулю. На рисунке контрольные биты выделены розовым цветом.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
r r1 x1 r2 x2 x3 x4 r3 x5 x6 x7 x8 x9 x10 x11 r4 x12 x13 x14 x15
1 1 0 1 1 1 1 1

В общем случае количество контрольных бит в кодовом слове равно двоичному логарифму числа, на единицу большего, чем количество бит кодового слова (включая контрольные биты); логарифм округляется в большую сторону. Например, информационное слово длиной 1 бит требует двух контрольных разрядов, 2-, 3- или 4-битовое информационное слово — трёх, 5…11-битовое — четырёх, 12…26-битовое — пяти и т. д.

Добавим к таблице 5 строк (по количеству контрольных битов), в которые поместим матрицу преобразования. Каждая строка будет соответствовать одному контрольному биту (нулевой контрольный бит — верхняя строка, четвёртый — нижняя), каждый столбец — одному биту кодируемого слова. В каждом столбце матрицы преобразования поместим двоичный номер этого столбца, причём порядок следования битов будет обратный — младший бит расположим в верхней строке, старший — в нижней. Например, в третьем столбце матрицы будут стоять числа 11000, что соответствует двоичной записи числа три: 00011.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
r r1 x1 r2 x2 x3 x4 r3 x5 x6 x7 x8 x9 x10 x11 r4 x12 x13 x14 x15
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 r
1 1 1 1 1 1 1 1 1 1 0 r1
1 1 1 1 1 1 1 1 1 r2
1 1 1 1 1 1 1 1 0 r3
1 1 1 1 1 r4

В правой части таблицы оставили пустым один столбец, в который поместим результаты вычислений контрольных битов. Вычисление контрольных битов производим следующим образом. Берём одну из строк матрицы преобразования (например, ) и находим её скалярное произведение с кодовым словом, то есть перемножаем соответствующие биты обеих строк и находим сумму произведений. Если сумма получилась больше единицы, находим остаток от его деления на 2. Иными словами, мы подсчитываем сколько раз в кодовом слове и соответствующей строке матрицы в одинаковых позициях стоят единицы и берём это число по модулю 2.

Если описывать этот процесс в терминах матричной алгебры, то операция представляет собой перемножение матрицы преобразования на матрицу-столбец кодового слова, в результате чего получается матрица-столбец контрольных разрядов, которые нужно взять по модулю 2.

Например, для строки :

= (1·0+0·0+1·1+0·0+1·0+0·0+1·1+0·0+1·0+0·0+1·1+0·0+1·1+0·1+1·1+0·0+1·0+0·0+1·0+0·1) mod 2 = 5 mod 2 = 1.

Полученные контрольные биты вставляем в кодовое слово вместо стоявших там ранее нулей. По аналогии находим проверочные биты в остальных строках. Кодирование по Хэммингу завершено. Полученное кодовое слово — 11110010001011110001.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
r r1 x1 r2 x2 x3 x4 r3 x5 x6 x7 x8 x9 x10 x11 r4 x12 x13 x14 x15
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 r 1
1 1 1 1 1 1 1 1 1 1 0 r1 1
1 1 1 1 1 1 1 1 1 r2 1
1 1 1 1 1 1 1 1 0 r3 0
1 1 1 1 1 r4 1

Алгоритм декодирования[править | править код]

Алгоритм декодирования по Хэммингу абсолютно идентичен алгоритму кодирования. Матрица преобразования соответствующей размерности умножается на матрицу-столбец кодового слова и каждый элемент полученной матрицы-столбца берётся по модулю 2. Полученная матрица-столбец получила название «матрица синдромов». Легко проверить, что кодовое слово, сформированное в соответствии с алгоритмом, описанным в предыдущем разделе, всегда даёт нулевую матрицу синдромов.

Матрица синдромов становится ненулевой, если в результате ошибки (например, при передаче слова по линии связи с шумами) один из битов исходного слова изменил своё значение. Предположим для примера, что в кодовом слове, полученном в предыдущем разделе, шестой бит изменил своё значение с нуля на единицу (на рисунке обозначено красным цветом). Тогда получим следующую матрицу синдромов.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
r r1 x1 r2 x2 x3 x4 r3 x5 x6 x7 x8 x9 x10 x11 r4 x12 x13 x14 x15
1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 s 0
1 1 1 1 1 1 1 1 1 1 0 s1 1
1 1 1 1 1 1 1 1 1 s2 1
1 1 1 1 1 1 1 1 0 s3 0
1 1 1 1 1 s4 0

Заметим, что при однократной ошибке матрица синдромов всегда представляет собой двоичную запись (младший разряд в верхней строке) номера позиции, в которой произошла ошибка. В приведённом примере матрица синдромов (01100) соответствует двоичному числу 00110 или десятичному 6, откуда следует, что ошибка произошла в шестом бите.

Применение[править | править код]

Код Хэмминга используется в некоторых прикладных программах в области хранения данных, особенно в RAID 2; кроме того, метод Хэмминга давно применяется в памяти типа ECC и позволяет «на лету» исправлять однократные и обнаруживать двукратные ошибки.

Источники:

https://zvondozvon. ru/radiosvyaz/kody-hemminga

https://eltransteh. ru/sindrom-oshibki-v-kode-hemminga/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: