Аппаратурная реализация циклических кодов 21 Вопросы 24

Кодовая комбинация циклического кода не содержит ошибки если

Под помехой понимается любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Ниже приведена классификация помех и их источников.

Приведем классификацию помехоустойчивых кодов.

k—число символов в исходной комбинации

r—число контрольных символов

Коды с обнаружением ошибок

1. Код с проверкой на четность.

Такой код образуется путем добавления к передаваемой комбинации, состоящей из k информационных символов, одного контрольного символа (0 или 1), так, чтобы общее число единиц в передаваемой комбинации было четным.

Определим, каковы обнаруживающие свойства этого кода. Вероятность P oo обнаружения ошибок будет равна

Так как вероятность ошибок является весьма малой величиной, то можно ограничится

Вероятность появления всевозможных ошибок, как обнаруживаемых так и не обнаруживаемых, равна , где — вероятность отсутствия искажений в кодовой комбинации. Тогда .

Общее количество комбинаций с обнаруживаемыми и не обнаруживаемыми ошибками равно

Тогда коэффициент обнаружения K обн для кода с четной защитой будет равен

Например, для кода с k=5 и вероятностью ошибки коэффициент обнаружения составит . То есть 90% ошибок обнаруживаем, при этом избыточность будет составлять или 17%.

2. Код с постоянным весом.

Этот код содержит постоянное число единиц и нулей. Число кодовых комбинаций составит

Пример 5.2. Коды с двумя единицами из пяти и тремя единицами из семи.

Этот код позволяет обнаруживать любые одиночные ошибки и часть многократных ошибок. Не обнаруживаются этим кодом только ошибки смещения, когда одновременно одна единица переходит в ноль и один ноль переходит в единицу, два ноля и две единицы меняются на обратные символы и т. д.

Рассмотрим код с тремя единицами из семи. Для этого кода возможны смещения трех типов.

Вероятность появления не обнаруживаемых ошибок смещения

, где

При p

Например, код при коэффициент обнаружения составит , избыточность L=27%.

3. Корреляционный код (Код с удвоением). Элементы данного кода заменяются двумя символами, единица ‘1’ преобразуется в 10, а ноль ‘0’ в 01.

Вместо комбинации 1010011 передается 10011001011010. Ошибка обнаруживается в том случае, если в парных элементах будут одинаковые символы 00 или 11 (вместо 01 и 10).

Например, при k=5, n=10 и вероятности ошибки , . Но при этом избыточность будет составлять 50%.

4. Инверсный код. К исходной комбинации добавляется такая же комбинация по длине. В линию посылается удвоенное число символов. Если в исходной комбинации четное число единиц, то добавляемая комбинация повторяет исходную комбинацию, если нечетное, то добавляемая комбинация является инверсной по отношению к исходной.

Прием инверсного кода осуществляется в два этапа. На первом этапе суммируются единицы в первой основной группе символов. Если число единиц четное, то контрольные символы принимаются без изменения, если нечетное, то контрольные символы инвертируются. На втором этапе контрольные символы суммируются с информационными символами по модулю два. Нулевая сумма говорит об отсутствии ошибок. При ненулевой сумме, принятая комбинация бракуется. Покажем суммирование для принятых комбинаций без ошибок (1,3) и с ошибками (2,4).

Обнаруживающие способности данного кода достаточно велики. Данный код обнаруживает практически любые ошибки, кроме редких ошибок смещения, которые одновременно происходят как среди информационных символов, так и среди соответствующих контрольных. Например, при k=5, n=10 и . Коэффициент обнаружения будет составлять .

5. Код Грея. Код Грея используется для преобразования угла поворота тела вращения в код. Принцип работы можно представить по рис.5.2. На пластине, которая вращается на валу, сделаны отверстия, через которые может проходить свет. Причём, диск разбит на сектора, в которых и сделаны эти отверстия. При вращении, свет проходит через них, что приводит к срабатыванию фотоприёмников. При снятии информации в виде двоичных кодов может произойти существенная ошибка. Например, возьмем две соседние цифры 7 и 8. Двоичные коды этих цифр отличаются во всех разрядах.

Рис.5.2. Схема съема информации угла поворота вала в код

Код Грея записывается следующим образом

Разряды в коде Грея не имеют постоянного веса. Вес k-разряда определяется следующим образом .

При этом все нечетные единицы, считая слева направо, имеют положительный вес, а все четные единицы отрицательный.

Например,

Непостоянство весов разрядов затрудняет выполнение арифметических операций в коде Грея, поэтому необходимо уметь делать перевод кода Грея в обычный двоичный код и наоборот. Алгоритм перевода чисел можно представить следующим образом.

Пусть — двоичный код, — код Грея

Тогда переход из двоичного кода в код Грея выполнится по следующему алгоритму

Например, .

Обратный переход из кода Грея в двоичный код

Например, .

Корректирующие коды

Корректирующими называются коды позволяющие обнаруживать и исправлять ошибки. Идею представления корректирующих кодов можно представить с помощью N-мерного куба. Возьмем трехмерный куб (рис.5.3), длина ребер, в котором равна одной единице. Вершины такого куба отображают двоичные коды. Минимальное расстояние между вершинами определяется минимальным количеством ребер, находящихся между вершинами. Это расстояние называется кодовым (или хэмминговым) и обозначается буквой d.

Рис.5.3. Представление двоичных кодов с помощью куба

определим, что расстояние между ними d=7.

Для кода с N=3 восемь кодовых комбинаций размещаются на вершинах трехмерного куба. Такой код имеет кодовое расстояние d=1, и для передачи используются все восемь кодовых комбинаций 000,001. 111. Такой код является не помехоустойчивым, он не в состоянии обнаружить ошибку.

Любая одиночная ошибка приводит к тому, что разрешенная комбинация переходит в ближайшую, запрещенную комбинацию (см. рис.5.3). Получив запрещенную комбинацию, мы обнаружим ошибку. Выберем далее вершины с кодовым расстоянием d=3

Пример 5.3. Ниже приведены кодовые комбинации, являющиеся группой или нет.

1) 1101 1110 0111 1011 – не группа, так как нет нулевого элемента

2) 0000 1101 1110 0111 – не группа, так как не соблюдается условие замкнутости (1101+1110=0011)

Для построения кода способного обнаруживать и исправлять одиночную ошибку необходимое число контрольных разрядов будет составлять

. Это равносильно известной задаче о минимуме числа контрольных вопросов, на которые могут быть даны ответы вида “да” или “нет”, для однозначного определения одного из элементов конечного множества.

Если необходимо исправить две ошибки, то число различных исходов будет составлять Тогда , в этом случае обнаруживаются однократные и двукратные ошибки. В общем случае, число контрольных символов должно быть не меньше

(5.1)

Эта формула называется неравенством Хэмминга, или нижней границей Хэмминга для числа контрольных символов.

Код Хэмминга

, (5.2)

Контрольные символы e j определим по формуле . Например, . Для простоты оставляем только слагаемые с единичными коэффициентами. В результате получим систему линейных уравнений, с помощью которых вычисляются контрольные разряды. Каждый контрольный разряд является как бы дополнением для определенных информационных разрядов для проверки на четность.

При декодировании вычисляем корректор K = k 4 k 2 k 1

Если корректор равен нулю, следовательно, ошибок нет. Если корректор не равен нулю, то местоположение вектор-столбца матрицы H, совпадающего с вычисленным корректором, указывает место ошибки. При передаче может возникнуть двойная и более ошибка. Корректор также не будет равен нулю. В этом случае произойдет исправление случайного символа и нами будет принят неверный код. Для исключения такого автоматического исправления вводится еще один символ для проверки всей комбинации на четность. Кодовое расстояние d=4. Тогда матрица H будет иметь вид

По формуле (5.2) находим число контрольных символов r=3. Берем регистр из 7 ячеек памяти. Размещаем исходную комбинацию в ячейках 3,5,6,7.

Находим контрольные символы

е 4 = 5 + 6 + 7 = 1 + 0 + 1 = 0

е 2 = 3 + 6 + 7 = 1 + 0 + 1 = 0

е 1 = 3 + 5 + 7 = 1 + 1 + 1 = 1

Закодированная комбинация будет иметь вид

Допустим, что при передаче возникла ошибка, и мы приняли неверную комбинацию

к 4 = 4 + 5 + 6 + 7 = 0 + 1 + 1 + 1 = 1

к 2 = 2 + 3 + 6 + 7 = 0 + 1 + 1 + 1 = 1

к 1 = 1 + 3 + 5 + 7 = 1 + 1 + 1 + 1 + 0

K = — в шестом разряде ошибка.

Если бы нам понадобилось построить код и для проверки двойных ошибок, необходимо было бы ввести еще один дополнительный нулевой разряд.

Получим следующий код

При передаче и возникновении ошибки код будет иметь вид

Проверка в этом случае показала бы, что корректор K=110, а проверка всей комбинации на четность E 0 = 0+1+0+1+0+1+1+1=1. Это указывает на одиночную ошибку. Допускается автоматическое исправление ошибки.

учебно-методическое пособие по информатике и икт (10, 11 класс) по теме

Коробейникова Ольга Витальевна

На сегодняшний день в мире передается огромное количество информации, хотя системы передачи данных отвечают всем требованиям. Они не являются столь совершенными.

Скачать:

Предварительный просмотр:

Федеральное государственное бюджетное образовательное учреждение

«Омский государственный педагогический университет»

Факультет математики, информатики, физики и технологии

Кафедра прикладной информатики и математики

Направление: педагогическое образование

Профиль: Информатика и Технология

Дисциплина: Теоретические основы информатики

«__» _______________ 20___г.

Введение

На сегодняшний день в мире передается огромное количество информации, хотя системы передачи данных отвечают всем требованиям. Они не являются столь совершенными. При передаче данных могут возникать помехи. Помехоустойчивость – способность системы осуществлять прием информации в условиях наличия помех в линии связи и искажений во внутри аппаратных трактах. Помехоустойчивость обеспечивает надежность и достоверность передаваемой информации (данных).Управление правильностью передачи информации выполняется с помощью помехоустойчивого кодирования. Есть коды, обнаруживающие ошибки, и корректирующие коды, которые еще и исправляют ошибки. Помехозащищенность достигается с помощью введения избыточности, дополнительных битов. В симплексных каналах связи устраняют ошибки с помощью корректирующих кодов. В дуплексных–достаточно применения кодов, обнаруживающих ошибки. [1]

История развития помехоустойчивого кодирования началась еще с 1946г., а именно, после публикации монографии американского ученого К. Шеннона «Работы по теории информации и кибернетике».В этой работе он не показал как построить эти коды, а доказал их существование. Важно отметить, что результаты работы К. Шеннона опирались на работы советских ученых, таких как: А. Я. Хинчин, Р. Р. Варшамов и др. На сегодняшний день проблема передачи данных является особо актуальной, т.к. сбой при передаче может вызвать не только искажение сообщения в целом, но и полную потерю информации. Для этого и существуют помехоустойчивые коды, способные предотвратить потерю и искажение информации. В настоящее время существует ряд разновидностей помехоустойчивых кодов, обеспечивающих высокую достоверность при малой величине избыточности и простоте технической реализации кодирующих и декодирующих устройств. Принципиально коды могут быть использованы как для обнаружения, так и для исправления ошибок. Однако удобства построения кодирующих и декодирующих устройств определили преимущественное применение лишь некоторых из них, в частности корректирующего кода Хемминга.

Цель данной курсовой работы: Ознакомление с помехоустойчивым кодированием и изучение кода Хемминга.

1) Ознакомиться с видами помехоустойчивого кодирования;

2) Ознакомиться с кодом Хемминга, как с одним из видов помехоустойчивого кодирования;

3) Изучить алгоритм построения кода Хемминга.

Объект исследования : помехоустойчивое кодирование.

Предмет исследования : код Хемминга.

Данная курсовая работа состоит из титульного листа, оглавления, введения, двух глав (теоретической и практической), заключения и списка литературы.

Глава 1. Теоретические основы изучения помехоустойчивого кодирования

1.1. Виды помехоустойчивого кодирования

В мире существует немало различных помех и искажений, это могут быть как звуковые искажения, так и на графике. Мы рассмотрим, что понимается под помехой в кодировании информации. Под помехой понимается любое воздействие, накладывающееся на полезный сигнал изатрудняющее его прием. Ниже приведена классификация помех и их источников.

Рис. 1.Помехи и их источники

Внешние источники помех вызывают в основном импульсные помехи, а внутренние – флуктуационные. Помехи, накладываясь на видеосигнал, приводят к двум типам искажений: краевыеи дробления. Краевые искажения связаны со смещением переднего или заднего фронта импульса. Дробление связано с дроблением единого видеосигнала на некоторое количество более коротких сигналов [2].

Приведем классификацию помехоустойчивых кодов.

1) Обнаруживающие ошибки:

2) Корректирующие коды:

А) С пороговым декодированием;

Б) По макс. правдоподобия;

В) С последовательным декодированием.

Теперь рассмотрим более подробно каждый вид кодирования.

Проверка четности – очень простой метод для обнаружения ошибок в передаваемом пакете данных. С помощью данного кода мы не можем восстановить данные, но можем обнаружить только лишь одиночную ошибку.

В каждом пакет данных есть один бит четности, или, так называемый, паритетный бит. Этот бит устанавливается во время записи (или отправки) данных, и затем рассчитывается и сравнивается во время чтения (получения) данных. Он равен сумме по модулю 2 всех бит данных в пакете. То есть число единиц в пакете всегда будет четно. Изменение этого бита (например с 0 на 1) сообщает о возникшей ошибке.

Начальные данные: 1111

Данные после кодирования: 11110 (1 + 1 + 1 + 1 = 0 (mod 2))

Принятые данные: 10110 (изменился второй бит)

Как мы видим, количество единиц в принятом пакете нечетно, следовательно, при передаче произошла ошибка [3].

Корреляционные коды (код с удвоением ).

Элементы данного кода заменяются двумя символами, единица «1» преобразуется в 10, а ноль «0» в 01.

Вместо комбинации 1010011 передается 10011001011010. Ошибка обнаруживается в том случае, если в парных элементах будут одинаковые символы 00 или 11 (вместо 01 и 10) [2].

Код с постоянным весом.

Одним из простейших блочных неразделимых кодов является код с постоянным весом. Примером такого кода может служить семибитный телеграфный код МТК–3, в котором каждая разрешенная кодовая комбинация содержит три единицы и четыре нуля (рис.2). Весом кодовой комбинации называют число содержащихся в ней единиц. В рассматриваемом коде вес кодовых комбинаций равен трем.

Число разрешенных кодовых комбинаций в кодах с постоянным весом определяется как количество сочетаний из n символов по g и равно

Рис.2. Примеры разрешенных и запрещенных комбинаций кода МТК-3

К исходной комбинации добавляется такая же комбинация по длине. В линию посылается удвоенное число символов. Если в исходной комбинации четное число единиц, то добавляемая комбинация повторяет исходную комбинацию, если нечетное, то добавляемая комбинация является инверсной по отношению к исходной.

Прием инверсного кода осуществляется в два этапа. На первом этапе суммируются единицы в первой основной группе символов. Если число единиц четное, то контрольные символы принимаются без изменения, если нечетное, то контрольные символы инвертируются. На втором этапе контрольные символы суммируются с информационными символами по модулю два. Нулевая сумма говорит об отсутствии ошибок. При ненулевой сумме, принятая комбинация бракуется. Покажем суммирование для принятых комбинаций без ошибок (1,3) и с ошибками (2,4).

По сравнению с простым кодом, код Грея позволяет уменьшить ошибки неоднозначности считывания, а также ошибки из-за помех в канале. Обычно этот код применяется для аналогово-цифрового преобразования непрерывных сообщений.

Недостатком кода Грея является его невесомость, т. е. вес единицы не определяется номером разряда. Информацию в таком виде трудно обрабатывать на ЭВМ. Декодирование кода также связано с большими затратами. Поэтому перед вводом в ЭВМ (или перед декодированием) код Грея преобразуется в простой двоичный код, который удобен для ЭВМ и легко декодируется.

Для перевода простого двоичного кода в код Грея нужно:

Таким образом, мы рассмотрели виды помехоустойчивого кодирования и увидели, что их существует не так уж и мало. Каждый код по своему уникален и полезен для кодирования информации. Теперь мы ознакомимся с кодом Хемминга подробнее.

1.2.Характеристика кода Хэмминга при помехоустойчивом кодировании

В середине 40-х годов Ричард Хемминг работал в знаменитых Лабораториях Белла на счётной машине Bell Model V. Это была электромеханическая машина, использующая релейные блоки, скорость которых была очень низка: один оборот за несколько секунд. Данные вводились в машине с помощью перфокарт, и поэтому в процессе чтения часто происходили ошибки. В рабочие дни использовались специальные коды, чтобы обнаруживать и исправлять найденные ошибки, при этом оператор узнавал об ошибке по свечению лампочек, исправлял и запускал машину. В выходные дни, когда не было операторов, при возникновении ошибки машина автоматически выходила из программы и запускала другую.

Р. Хемминг часто работал в выходные дни, и все больше и больше раздражался, потому что часто был должен перегружать свою программу из-за ненадежности перфокарт. На протяжении нескольких лет он проводил много времени над построением эффективных алгоритмов исправления ошибок. В 1950 году он опубликовал способ, который на сегодняшний день мы знаем как код Хемминга.[6.].

К ним обычно относятся коды с минимальным кодовым расстоянием исправляющие все одиночные ошибки, и коды с расстоянием исправляющие все одиночные и обнаруживающие все двойные ошибки. Длина кода Хэмминга:

(r – количество проверочных разрядов).

Рис.3. Проверочная матрица

Перестановкой столбцов, содержащих одну единицу, данную матрицу можно привести к виду(рис.4)

Рис. 4.Измененная матрица

Использование такого кода позволяет исправить любую одиночную ошибку или обнаружить произвольную ошибку кратности два. Если информационные и проверочные разряды кода нумеровать слева направо, то в соответствии с матрицей получаем систему проверочных уравнений, с помощью которых вычисляем проверочные разряды(рис.5):

Рис.5. Система проверочных уравнений

Двоичный код Хэмминга с кодовым расстоянием получается путем добавления к коду Хэмминга с одного проверочного разряда, представляющего собой результат суммирования по модулю два всех разрядов кодового слоя. Длина кода при этом разрядов, из которых являются проверочными.

Операция кодирования может выполняться в два этапа. На первом этапе определяется кодовая комбинация с использованием матрицы H, соответствующей коду с на втором — добавляется один проверочный разряд, в котором записывается результат суммирования по модулю два всех разрядов кодового слова, полученного на первом этапе. Операция декодирования также состоит из двух этапов. На первом вычисляется синдром, соответствующий коду на втором — проверяется последнее проверочное соотношение.[8]

Таким образом, ознакомившись с характеристикой кода Хемминга, важно сказать, что состоит код из двух частей и предполагает надежную работу нахождения ошибок и корректировки сообщений.

1.3.Алгоритмы использования кода Хэмминга для нахождения ошибок

Код Хэмминга представляет собой блочный код, который позволяет выявить и исправить ошибочно переданный бит в пределах переданного блока. Код Хэмминга состоит из двух частей. Первая часть кодирует исходное сообщение, вставляя в него в определённых местах контрольные биты (вычисленные особым образом). Вторая часть получает входящее сообщение и заново вычисляет контрольные биты (по тому же алгоритму, что и первая часть). Если все вновь вычисленные контрольные биты совпадают с полученными, то сообщение получено без ошибок. В противном случае, выводится сообщение об ошибке и при возможности ошибка исправляется.

Рассмотрим алгоритм построения кода для исправления одиночной ошибки.

Количество разрядов m – определяет количество проверок.

В третью проверку – коэффициенты которые содержат 1 в третьем разряде и т. д.

Источники:

https://gigabaza. ru/doc/77984-pall. html

https://nsportal. ru/shkola/informatika-i-ikt/library/2016/10/03/kursovaya-rabota-kod-hemminga

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: